翻訳と辞書
Words near each other
・ Hilbert's twenty-third problem
・ Hilbert, West Virginia
・ Hilbert, Wisconsin
・ Hilbert–Bernays paradox
・ Hilbert–Bernays provability conditions
・ Hilbert–Burch theorem
・ Hilbert–Huang transform
・ Hilbert–Kunz function
・ Hilbert–Mumford criterion
・ Hilbert–Poincaré series
・ Hilbert–Pólya conjecture
・ Hilbert–Samuel function
・ Hilbert–Schmidt
・ Hilbert–Schmidt integral operator
・ Hilbert–Schmidt operator
Hilbert–Schmidt theorem
・ Hilbert–Smith conjecture
・ Hilbert–Speiser theorem
・ Hilbesheim
・ Hilborn
・ Hilborne Roosevelt
・ Hilborough
・ Hilbourne Frank
・ Hilbram Dunar
・ Hilbrand Boschma
・ Hilbrand J. Groenewold
・ Hilbrand Nawijn
・ Hilbre High School
・ Hilbre Island
・ Hilbre Island Lighthouse


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hilbert–Schmidt theorem : ウィキペディア英語版
Hilbert–Schmidt theorem
In mathematical analysis, the Hilbert–Schmidt theorem, also known as the eigenfunction expansion theorem, is a fundamental result concerning compact, self-adjoint operators on Hilbert spaces. In the theory of partial differential equations, it is very useful in solving elliptic boundary value problems.
==Statement of the theorem==

Let (''H'', ⟨ , ⟩) be a real or complex Hilbert space and let ''A'' : ''H'' → ''H'' be a bounded, compact, self-adjoint operator. Then there is a sequence of non-zero real eigenvalues ''λ''''i'', ''i'' = 1, ..., ''N'', with ''N'' equal to the rank of ''A'', such that |''λ''''i''| is monotonically non-increasing and, if ''N'' = +∞,
:\lim_ \lambda_ = 0.
Furthermore, if each eigenvalue of ''A'' is repeated in the sequence according to its multiplicity, then there exists an orthonormal set ''φ''''i'', ''i'' = 1, ..., ''N'', of corresponding eigenfunctions, i.e.
:A \varphi_ = \lambda_ \varphi_ \mbox i = 1, \dots, N.
Moreover, the functions ''φ''''i'' form an orthonormal basis for the range of ''A'' and ''A'' can be written as
:A u = \sum_^ \lambda_ \langle \varphi_, u \rangle \varphi_ \mbox u \in H.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hilbert–Schmidt theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.